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FOR INCOMPRESSIBLE FLOWS

By C. C. Lin and S. F. Shen
SUMMARY

The classical theories for turbulent shear flow are the momentum
transfer theory of Prandtl, the vorticity transfer theory of Taylor, and
the similarity theory of Von Kdrm&n. The two transfer theories both
involve a mixture length, which must be given by an additional assumption.
On the other hand, the similarity theory is a more determinate scheme,
because it makes a more definite hypothesis about the nature of the turbu-
lent fluctuations. Goldstein, however, introduced an alternative form
of the similarity theory. A great amount of work has been done to
evaluate the relative merits of these three theories. ’

Further investigation into the nature of turbulent motion is, howevér,
done largely in connection with the simpler case of isotropic turbulence.
In this field, much recent progress has been made, particularly following
the concept of Kolmogoroff. The concept of similarity also plays a
dominant role. Since Kolmogoroff's theory is also applicable to shear
flow, it is natural that one should reexamine the similarity theory of
Von KArmin by using modern concepts. This is the main purpose of the
present investigation. It is found that the original form of the theory

is supported by modern concepts.

INTRODUCTION

The concept of similarity was first introduced by Von Kérmin in 1930°
(reference 1).  Even at the very beginning, he realized that it was not
possible to have complete similarity, including both the components of
fluctuation essentially free from viscous forces and those largely influ-
enced by viscous forces. It was Taylor (reference 2), however, who
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first made a more penetrating analysis into this question in connection
with isotropic turbulence. He introduced a macroscale of turbulence 1
and a microscale A. He also fully discussed, both theoretically and
experimentally, how two turbulent fields may be similar in all the large
eddies, which contain practically all the energy, and yet differ com-
pletely in their rates of dissipation, which are governed chiefly by

the small eddies having a negligible contribution to the total energy.
In particular, he gave the relation

. v<1;,;>2 (1)

o (u')3
1

for the energy dissipation ¢ in terms of the scales of turbulence, its
intensity u', and the kinematic-viscosity coefficient v. This rela-
tion shows clearly that full similarity cannot be possible in general.

A further advance in this direction was made by Kolmogoroff (refer-
ence 3). According to his concept, for large Reynolds numbers of turbu-
lence, as defined by Ry = u'r/v, the small eddies are independent of

the behavior of the large eddies, except to the extent that they supply
the energy to be dissipated. There are then only the two parameters ¢
and v for the viscous range. From dimensional arguments, Kolmogoroff
introduced the characteristic velocity v and the characteristic scale
n defined, respectively, by

v o= (Ve)l/u

(v%é)l/u

In terms of the spectrum of turbulence, the high (spatial) frequency
components are dependent only on v and 7. By assuming that the lower
end of this range is independent of Vv explicitly, one arrives at the
spectrum

=
]

7

F ~ 62/3}{-5/3 (3)

where g 1is the wave number. This relation was first given by Obukhoff
(reference L) and was found independently later by Onsager (reference 5),
Heisenberg (reference 6), and Von Weizsécker (reference 7).
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The idea that the low-frequency range takes care of almost all of
the energy and that the high-frequency range takes care of almost all of
the dissipation has been fully demonstrated by Von Kdrmén and Lin (refer-
ences 8 and 9). It is found that, in either case, the unimportant part

to the important part is of the order of Rx-m (where m 1is some posi-

tive number) and is consequently negligible for large Reynolds numbers
of turbulence. The analysis was made by evaluating the integrals

00 j
I, =f F(K) dk

0]
Iy =f KEF(K) dk

0

for energy and dissipation, assuming the characteristic quantities V, 1
for the low-frequency range and the characteristic quantities v, 1

for the high-frequency range and using Taylor's relation (equation (1))
and the Obukoff spectrum formula (equation (3)).

J

_ This kind of analysis is now used to remove a difficulty raised by
Goldstein in his analysis of Von Kdrmin's similarity theory (reference 10)
Goldstein showed that there are at least two ways of applying the simi-
larity theory, one dnalogous to the momentum transfer theory (the
T-theory) as given originally by Von Kéfmén,‘and the other analogous to
the vorticity transfer theory (the M-theory). By an analysis of the
relative importance of the high-frequency and low-frequency components,
it is possible to show that the T-theory is a logical consequence of
Von Kdrmén's similarity concept, while the M-theory does not follow
directly. This kind of investigation also shows that the usual discus-
gion of the similarity theory needs some modification, although the
final conclusions are not altered.

. It is the purpose of the present paper to reexamine critically
Von Kdrmén's similarity theory for incompressible flows by using modern
concepts in order to provide a basis for extension and application of the
theory to compressible flows. In references 11 and 12 turbulent boundary
layer over a flat plate in compressible flow is treated in the same spirit.
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THE CLASSICAL SIMILARITY THEORY OF VON KARMAN

It seems convenient to begin with a brief sketch of the original
similarity theory of Von Kérmén, together with Goldstein's discussion
of its difficulties and his alternative suggestion (the M-theory).
Remarks will then be made from the present point of view, leading to
the fuller discussions of the next section.

Von Kdrmén considered a steady two-dimensional mean flow and made
the following hypotheses (see reference 10): (1) The turbulence mech-
anism is essentially independent of the viscosity of the fluid (except
in the viscous layer near the walls); (2) In comparing the turbulence
mechanisms at two different points, consideration of the fields of
turbulent flow may be restricted to the immediate neighborhoods of these
points; (3) The turbulence flow patterns at different points are similar
(relative to frames of reference moving with the mean velocities at the
points) and differ only in scales of length and time (or velocity). Om
the basis of these hypotheses (the validity of which will be examined
later), the following development of the theory may be made. (See
appendix A for definitions of important symbols.)

Consider a two-dimensional parallel mean motion with velocity U(y)
in the direction of the x-axis. If (u,v,w) are the turbulent velocity
components and p 1is the pressure, the Navier-Stokes equations are

du 4 ydu ., jL(uu) + jl(uv) + El(uw) =-1 §P>+ v AMu
ot ox Ox dy z P Ox
N,y , 3 S Ofyw) = 109P S (5)
St U 5 * ax(vu) + a‘y(vv) + az(vw) "0y + VAV
ow ow . 0O d 3 _ 1 ég
S-£+U$+—a—;(wu) +S§(W) +§;(W) paz-i'VAW

y,
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and the equation of continuity is

@E + éX + éE =0 (6)
Ox Jdy Oz :

AcCording to the first assumption the term in v may be neglected. One
may now differentiate the set of equations (5) and combine the resultant

"equations to yield the equations for the turbulence vorticity components

(g,n,c). The usual derivation is based on these vorticity equations.

From the present point of view, the neglect of viscosity means that
the "low-frequency" components of the turbulent fluctuations are being
considered. It is known, however, that the "high-frequency" components
of the vorticity fluctuations are more important. It is consequently
difficult to justify the neglect of viscosity from the vorticity equation,
as it is usually done. Even the neglect of viscosity from the original

Navier-Stokes equations (5) requires a careful examination. These points

will be discussed more fully in the next section.

‘To proceed with the derivation, take the origin at the point P
under consideration and axes moving with the mean velocity at P, so

that U = 0 at the origin. The assumption is introduced that only the

immediate neighborhood of P may be considered: For dU/dy, d2U/dy2,
their values are taken at P, while for U +the first term only of the
Taylor expansion is taken, namely, y(dU/dy)P. The scales of length and

velocity are introduced by writing

x = 1% t = 1t/a
Ly = 1¥ u = AU
z = 1% v = A¥
w = 1w
so that
£ = AE/1
n = AV/1

£ = 82/

G

where F = 5% - B;, and so forth. Substituting these into the equations
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for vorticity and requiring them to be independent of the position of
the origin and of the values of dU/dy, dQU/dy2 there, one obtains

A = Constant 1 ég

dy

o~
1]

2
Constant %E Q_%
y dy

The Reynolds shearing stress at different points of the fluid is

T = -puv = —oAgﬁV and is therefore proportional to plg(dU/dy)g; and,
if 1 1is multiplied by a suitable constant, there may, when signs are
regarded, be written

T = ple duau
dyjdy

o~
!

2
_K dU/d U

1dydy2

o ——

The average state of affairs under consideration is essentially indepen-
dent of x and 2z, and the rate M at which x-momentum is cormunicated
to unit volume is

M = d(-puv)/ay

~(pA2/1) d(%) ay

and is therefore proportional to pl(dU/dy)2 or to plg(dU/dy)(dQU/dyE).
If 1 1is multiplied by a suitable constant, there may therefore be written

M= 12 43U

_x dU/hQU
2layl . 2
Y ay

o~
|
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Notice also that M = p¥{, if the average state of affairs is indepen-
dent of x. Thus, the first alternstive, the T-theory given by Von Ké}mén,
is formally related to the momentum transfer theory, while the second
alternative, the M-theory given by Goldstein, is formally related to the
vorticity transfer theory, although the basic concept of the similarity
theory is essentially different from a transfer theory.

The above derivation is essentially the one used by Goldstein, the
only difference being that he started with the vorticity equations
directly. The original derivation of Von Kdrmfn is made by a considera-
tion of two-dimensional fluctuations, which is sufficient to provide the
essential steps. In Goldstein's paper, there are also an extension of
the theory to the flow through a pipe and a critical discussion of the
validity of the theory. His investigations show that in the axially
-gymmetrical case, it is impossible to have a simple similarity as that
in the two-dimensional case if terms of the same order of magnitude are
all kept. This becomes obvious when the radius of curvature of the
surface of constant velocity is recognized as an additional parameter
affecting the length scale for a local similarity. He also found that
the velocity distribution from the t-theory agrees better with the
experiments for flow between parallel planes, whlle the M-theory appears
to be more satisfactory for pipe flow.

Another generally recognized difficulty with the similarity theory is
the following. As a consequence of the theory, the ratios

u2: ve: w°: uv: uw: vw should remain constants., In a channel, this is
found to be a good approximation only for points not too close to either
the wall or the center line.

To summarize, the following unsatisfactory points in the sgimilarity
theory have been discussed:

(a) There is nothing in the original theory to decide between the
7-theory and the M-theory and any other alternative obtained, say, by
-~ an application of the theory to the calculation of J27/dy°.

(b) It cannot be extended to cases other than the orlginal cagse of
two-dimensional parallel flows.

(c) The ratios ul v2 and so forth are not.constants near the center
of the channel or near the boundary.

(d) In addition, there is the difficulty in applying the theory to
flows with a point of inflection in the velocity profile.

(e) Again, the scale 1 +turns out to be only moderately small in
most cases. '
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It must be noted that most of the difficulties are limitations which
do not bear on the basic concept of the theory. The final form of the
theory is applicable only when the scale may be expected to be determined

by dU/dy and daU/dyE. This is obviously not the case 1n wakes or in
the central part of the channel. This is also the reason why the axially
symmetrical case cannot be treated. The presence of another length scale
makes similarity unlikely. Near the boundary, similarity might also break
down as soon as the gcale is comparable with the distance from the
boundary.

Thus, the essential difficulties are (a) and (e) discussed above if
one limits oneself to flows through channels and in the boundary layer.

'Tt is to be recognized that the whole boundary layer or the channel
should be regarded as an "organic" field of motion. One might even
describe the turbulent motion as a nonlinear oscillation superposed over
a field of flow. Thus, any attempt to "localize" the theory, such as is
done in the similarity theory and to a certain extent in the transfer
theories, is at best a rough approximation. One is faced with the dilemma
of either treating each individual case separately with proper emphasis
on the influence of the boundary conditions or being satisfied with an
approximate theory having a fairly general applicability. The latter
course has often been taken.

The only remaining difficulty (a) is to be settled by a critical
examination of the concept of similarity from the standpoint of recent
developments of the statistical theory of turbulence. It will be seen
that the basic concept of Von Kdrm&n's similarity prefers the original
form of the theory (T-theory) to any theory based on higher-order deriva-
tives (M-theory, etc.).

CRITICAL DISCUSSION OF SIMILARITY CONCEPT FROM STANDPOINT

OF MODERN STATISTICAL THEORIES

The concept of the similarity theory in shear flow will now be
formulated and it will be shown how it is related to the concept of
similarity developed in the statistical theory of isotropic turbulence.
The concepts developed from the statistical theory will then be applied
to the present problem to show that the M-theory does not follow from
Von Kérmén's concept of nonviscous similarity in shear flow.

General concepf of similarity.- As discussed above, the gimilarity
of the large-scale eddies (which are responsible for transfer) is at
best a rough approximation. The similarity of the small eddies (which
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are responsible for the energy dissipation) is however a much closer
approximation at very large Reynolds numbers of turbulence. According
to the concept of Kolmogoroff, this part of the turbulent fluctuation
will depend only on the kinematic viscosity coefficient v - and the rate
- of energy transferred to these scales from larger scales. Furthermore,
this part of turbulent motion is isotropic and has a universal character
independent, say, of the amount of ghear in the main flow. The rate of
energy transfer is approximately the same ag the total rate of dissipa-
tion €. The order of ac¢curacy of such approximations has been estimated

by Von Kdrmén and Lin (references 8 and 9). In other words, in the case
of shear flow, there is a production of turbulent energy from main motion
by the usual transfer mechanism (at a scale of 1 = KU'/U", say). This
large-scale turbulence breaks down into motions at smaller scales and
eventually passes into the viscous range to be dissipdated into heat. The
rate of transfer may be estimated, say, by Taylor's formula. These large-
scale motions, being produced directly from the mean motion, must depend
on their characteristics. According to the concept of Von Kérmén, the
turbulent fluctuations in this range have a universal structure, with a
length scale 1 = KU'/U" and a velocity scale 1IU'. ‘'Thus, two regimes
of similarity are visualized: (a) The large-scale similarity of

Von Kérmin and (b) the small-scale similarity of Kolmogoroff. The first
range 1s anisotropic and contributes to the shear; the second range is
isotropic and contributes only to the dissipation. The transition range

probably has an energy spectrum €2 3&'5/3 with decreasing amount of
shear.

This picture of similarity is analogous to the one visualized by
Von Kfrmin and Lin (references 8 and 9) for the intermediate stage of decay
of isotroplc turbulence. There, the large-scale eddies are also isotropic,
having & scale determined by the Loitsiansky invariant. It must be
remarked that the establishment of an equilibrium or quasi-equilibrium
state for large-scale motions takes a long time. Thus, it may be sub-
Jjected to doubt whether the idealized picture thus visualized can actually
occur for decaying turbulence. On the other hand, in the case of shear
flow, a stationary system being considered, the condition is more conducive
to the éstablishment of Von Kdrmdn's similarity.

With this general concept of similarity in mind, the claésical theory
of similarity for shear flow may now be examined with the help of results
developed for isotropic turbulence. In the first place, one may examine

the orders of magnitude of length, velocity, and vorticity for the eddies
of large scales and small scales.
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For large-scale motions,

Length scale 1~ U/u"
Velocity scale vV ~ U >~ (T)

Vorticity scale V/Z ~ U

For small-scale motions,

\
1/k -3/2
Length scale n = (v3/€) / = Number X IRX
Velocity scale v = (VE)l/h = Number X VRx'l/E > (8)
v 1/2
Vorticity scale ek (v/e) = Number x (V/1)R,
)

where RX is the Reynolds number of turbulence and is usually very

large.

Thege order-of-magnitude relations will now be applied to the
development of the similarity theory. In particular, the tollowing
two points will be considered:

(a) The neglect of the viscous components from the equations for
' turbulent fluctuations

(b) The relative plausibility of the r-theory and the M-theory

In making these considerations, the low-frequency and the high-frequency
components will be considered as behaving independently in & linear
equation. For nonlinear terms, low-frequency components can be obtained
by the product of two terms both of the high frequency or both of the
low frequency, while high-frequency components can be obtained by the
product of one term of the high frequency and one term of the low fre-
quency. Thus, if one rites

u=u1+uh (9)
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" where u denotes the low-frequency components, and wuy, the high-
frequency components, then in _ .

e = uze + 2uluh + uh2 (10)

the low-frequency components come from ulg and uh2, while the high-

frequency components come from U, and uhe.

2

Since u, Ky, it is seen that v may be approximated by uze.

Thus, in the left-hand side of any one of equations (5), one is justified
in putting a subscript 1 +to every fluctuating gquantity, if the low-
frequency components of the whole left side are desired. The right-hand
gide is linear, and hence one can again consider the low-frequency com-
ponents separately. For these, the viscous dissipation is known to be

negligible (as may be verified by noting that Vv Au =z VV/Z2 is small
compared with é%(uu) when Vl/v is large). Consequently, Von Kédrmén's
original assumption of neglecting v 1is Justified. :

The equation of continuity (6) is linear and can therefore be
considered separately for components of low and high frequencies.

It is remarked that thé above discussicn can be carried through
only when equations (5) are put into the form given. If the left
sides of equations (5) were written in the form

Du _ du du du du - du :
Dot et xS (11)

the neglect of the influence of the high-frequency components on the low-

frequency components would have been dubious. Consider, for example, the
term '

du _ ou, - Ouy duy, ouy,
"Fy”"zwf"h‘g},—*"zyy‘*"hg; (12)
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auz Buh
The low-frequency components are given by \4) S__ as well as by vy —
y oy
Now, by equations (7) and (8), y
\
du 2
vy 21 ¥
oy 1
du :
v b ¥ > (13)
oy
"~ fR 1/2
J

and it would not be legitimate to replace v %% by vz(auz/ay). The

mathematical argument can be carried through only when Du/Dt, and so
forth are put into the form given in equations (5), with the help of the 4
equation of continuity.

T-theory and M-theory.- The above arguments also suggest that in the
evaluation of 7 = -puv, the contribution of the low-frequency components
predominates, while that of the high-frequency components is negligible.
This would Jjustify the application of the similarity concept to the cal-
culation of 7. On the other hand, in the product v¢, the high-
frequency components predominate. This suggests that 'Vf would be
dependent more on the high-frequency components than on the low-frequency
components. Thus, the similarity concept at low frequencies, as developed
above, cannot be used for obtaining a formula for Ff. The M-theory is
therefore not a direct consequence of Von Kdrmdn's concept of similarity.

These arguments should be somewhat modified by the fact that turbu-
lence tends to be isotropic at high frequencies. This fact strengthens
the argument for T but weakens the argument against 'VE. It is pos-
sible that the contribution to Vf is equally important from high-
frequency and low-frequency components. But there is no convincing
argument to show that the high-frequency components can be entirely
neglected. To make the ideas more precise, use will now be made of the
correlation tensor and the spectral tensor in the discussion.
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For convenience, first consider homogeneous anisotropic turbulence.

Then, the correlation tensor Riy = ui(P)uk(P') is a function of the

relative pbsitional vector - The spectral tensor Fik(nl) stands
in Fourier transform relation to Rik:

L Ry (8)e(FE) ar(e)
(2“)3f/f ik\s)e |

~-i(k¢)

5

Fi(k) =

R.k(é) = Fik(n)e dr (k)

1

From these, it is seen that

) ’ , -1
y (Pg(E) - M R0 0 g )

If one lets ¢—>0 in the formula for Rik’ it is seen that

If a spherical coordinate system is considered in the k-space, integration
with respect to the angular variables leads to ‘

T = | Feg (0 & | (17)

where ;. 1is a "correlation coefficient," being equal to unity when

1 = k. Isotropy at high frequencies requires that, for 1 # k, ¢;(x)

approach zero rapidly with k—sw, being substantially zero in the
viscous range. ’
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Thus, the contribution of the low-frequency components to U Uy

dominates that of the high-frequency components even to a greater extent
when i # k than when i = k. In the latter case, it is well-known

that the high-frequency components are negligible (cf. appendix B), and
this is therefore still more so in the case 1 # k where the factor @,
reduces the influence of the high-frequency components still further.

It is not possible to make a similar discussion for VE by using
homogeneous and anisotropic turbulence, because this term is zero. How-
ever, one may write a formula analogous to equation (17) in the form

o0

Ouy = F(n)wikl(n)n ak | (18)

. =
13 o

where Vi ; 1is a dimensionless "correlation coefficient,” approaching

zero rapidly as k—>w, and the factor k 1is suggested by formula (15).
It will be shown in appendix B that, without the factor Vjy;, the

contribution to the above integral would practically all come from the
high-frequency components. However, since Vj;,; must approach zero
rapidly as k—>»w, thisg argument is not certain. But, at any rate,
equation (18) does not show that VE will be essentially determined by
the low-frequency components. One may also argue as follows. The fac-

tor W‘kl probably begins to become insignificant ohly in the K-5/3 range.

i
For various Reynolds numbers of turbulence, corresponding to identical
low-frequency components, the extent of the n_5/3 range differs. Since

this range is now obviously important for the determination of inte-

gral (18), the amount of vorticity transfer would depend on the local
Reynolds number of turbulence. This is another way of stating that there
is no similarity in this sense between the various points of the flow
field. '

The above discussion shows that the 7-theory should be used in
connection with Von Kédrmén's gimilarity concept.

DISCUSSION

It is perhaps in order now to make a general survey of the present
theories of shear flow. In contrast with the similarity theory, there
are the theories of transfer of momentum and vorticity. In comparing the
gsimilarity theory with transfer theories, it should be noted that, although
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there is formal similarity in the final formulas, there is a definite
difference in basic concept. The similarity theory does not directly

use the physical picture of the mechanism of transfer. It, however,
asserts more definitely on the nature of the turbulent fluctuations.

On the one hand, this has the advantage of leading to a formula for the
scale. On the other hand, one can apply the concepts evolved from modern
statistical theories to the theory of shear flow by following the concept
of similarity. The present work seems to be one of the few attempts in
this direction, and it tends to bear out the classical form of the theory
of Von Kérmén (T-theory). The use of Von Kdrmdn's concept to calculate
average quantities involving velocity derivatives (such as in the
M-theory) cannot be justified by current concepts of the statigtical
theory of turbulence.

The conclusion that the 7-theory (analogous to the momentum transfer
theory) is preferable to the M-theory (analogous to the vorticity transfer
theory) perhaps requires further clarification. A great deal of work
has been done, following Taylor, which shows that the vorticity transfer

. theory is better than the momentum transfer theory. The strongest case

is perhaps the one involving joint velocity and temperature distributions
in a wake and in a jet. Whereas the momentum transfer theory predicts

the same distribution for velocity and temperature, the vorticity transfer
theory can account for the difference in distribution which is actually
Observed experimentally. In fact, if 68 is the fluctuation of tempera-
ture, the transfer of heat is

— 2lavlad : . ’
“Ov = 17| = 1
Idy i | (19)

in either theory. The momentum transfer theory gives further

5 - 12|l

.
5 = -Uv 3y |ay (20)
while the vorticity transfer theory gives
1dr + .o AU d2U ‘
== =tv= 15— — (21)
o Jdy. oy ayE
If 1 1is assumed constant, this leads to
T .1 ,2(dujdu
s~ 2 " |wy|ay (22)
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The difference in the numerical factor 1/2 is the essential point in
question.

In applying this kind of argument to the similarity theory, one
must recognize, as mentioned above, that the mechanism of transfer is
not directly used in the similarity theory. In the transfer theories,

-1t is natural to use the same transfer coefficient lQIdU/dyl in all
the formulas, such as equations (20) to (22). On the basis of the
similarity concept,

According to the 7-theory, then

I . 12 QH QH
p dy| dy
— au|adb
- vo 1 ay|ay

but nothing can be gaid of the constants of proportionality. Thus, the

above method of testing cannot distinguish between the T-theory and the
M-theory.

It must be added that the similarity theory with the for-

mula 1 ~ U'/U" does not apply to the case of wakes and jets, because
the velocity-distribution curve has a point of inflection. The general
concept of similarity of low-frequency components, however, might still
apply even though the scale of similarity in such cases is probably not
determined by the local veloclity distribution. In fact, even in other
cases of shear flow, the validity of the general considerations of
'similarity does not depend on the correctness of Von Kermgn's formula.

Massachusetts Institute of Technology
Cambridge, Mass., December 27, 1950
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APPENDIX A

. SYMBOLS
1 similarity-scale of length
D pressure
t - time
U, V,w fluctuating velocity components in x-, y~-, and z-direction,
resgpectively '
’x,y,z Cartesian coordinates; x-axis in direction of mean fldw
L macroscale of turbulence |
Ry Reynolds number of turbulence
U velocity in x-direction
A velocity scale
p rate of dissipation
6 fluctuation Qf temperature
K wave number
A Taylor's microscale of turbulence
v coefficient of kinematic viscosity
EsNs¢ turbulence vorticity componentsv
o density of fluid
T shearing stress
Subscripts:
1 low-frequency part‘df fluctuations
h high-frequency part of fluctuationé~

17

Barred quantities always represent mean values; primed quantities
represent fluctuations. - '
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APPENDIX B
MOMENTS OF THE SPECTRUM OF TURBULENCE

As indicated in the section "Critical Dissussion of Similarity
Concept from Standpoint of Modern Statistical Theories,"” the relative
contribution of the low-frequency and high-frequency components to the
moments of the spectral function plays an important role in deciding
the physical concept of the mechanism of turbulence. 1In this section,
it will be shown that in the case of large Reynolds numbers, the low-
frequency contribution to the integral

I, = j\mF(K)Kn ak (A1)
0

is much more important than the high-frequency contribution 1f n < 2/3,
while the reverse is true if n > 2/3 (equation (A15)). The low fre-
quencieg and the high frequencles are separated at a fairly arbitrary

point in the «5/3 range. In the borderline case of n = 2/3, the
relative contribution depends on where the separation of the two ranges
is made (equation (A16)).

The special cases of n = 0 (giving the energy) and n = 2 (giving
the dissipation) are well-known (cf. "Introduction"). The case n =1 has
been used in the section "Critical Discussion of Similarity Concept from
Standpoint of Modern Statistical Theories" to bring out the difficulties
associated with the M-theory. The case n = -1 would be of 1lmportance
in determining the macroscale. It is clear that the macroscale would be

proportional to
o0 o0
-1
L=f F(k)x = ak f F(x) ax (A2)
0 0 '

and is consequently a low-frequency property. This 1s in contrast with
the microscale A of Taylor. Since X 1s proportional to Io/IE’ it
depends on the low-frequency components as well as on the high-frequency
components.

The method of investigation is the one used by Von KérmAin and Lin
(references 8 and 9). Iet k* be some frequency (as yet unspecified) in
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the range where F ~ K-5/3. The spectrum below this frequency k¥ is
assumed similar with a length scale 1L and a velocity scale V. Above

1 it, the characteristic quantities are v and Nn. Thus, the spectrum
may be described as follows. For low frequencies,
F(k) = VeLP(kL) (A3)
where the function f(X)  has the behavior
-5/3 | |
£(X) ~ CX / : (Ak)
for large values of X, for example, of the order of X* = k¥L.
For high frequencies,
F(k) = v2ng(kn) . (a5)
. where the function g(x) has the behavior

g(x) = c#'5/3 | (A6)

for small values of x, for example, of the order of x¥* = K¥*7.

In evaluating the integral (Al), split it up into two parts:

ok °° '
I, =f F(k)k  dr + F()e™ dx (AT)
0

K:*

The low-frequency part is

(48)
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where X¥ 1is large. The high-frequency part is

L/~ Flx )"
125 Pg(x) ax (A9)

where x* 1is small. To get the order of magnitude of the integrals,
use is made of equations (A4) and (A6). Thus, for n >2/3,

n
Jn,l =f; XF(X) ax

- fx an(x) - cx'5/E' dX + CX* ( - %) (A10)
o |

The first integral may be approximated by letting the upper limit go to
infinity, and then
*
’ XBe(X) ax
0

(x*)" 3+ o(1) (A11)

n,1l

o]
]
k»lm

In the case n < 2/3, integral (A10) is convergent as X¥—»w. Thus,
write

’ X0e(X) ax =f x7f(X) ax - ’ an(x) - CX ] X + —C 2(X*)n-3
0 0 x* | n- <
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which leads to the same answer (All). Similarly,

o n-2
In,h =f xg(x) ax = — 5(x¥) 34+0(1) for n 22/3

x* n-=
3
The ratio of the two integrals Jn,l and Jn,h is therefore
B 2 A
n-§ 5
- ¥* ' !
Jn’z/un,h = 0|(x") n >z
_ .
' ¢ LT
. ' 2
Jn,Z/Jn,h =0 (X*) n <§
R o
On the other hand, from equations (A3) to (46),
| -5/3
€ VAL = c(kL)
. =5/3
= vne(kn) /
so that
1/3 -
V. E) /
v \n
1
A
x*
Thus, )

I /& 0 ;x*$ -§§] -
n,1 n,h = N n>-3-

LY

’ J

* o These are the statements made at the beginning of this section.

¢
ImJ%mﬁo(ff@gﬂ n< |

21

(A12)

(A13)

(A1k)

(a15)
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In the case n = 2/3, the above type of arguments give

2
In,l v log x*

%—2—7§

L

and the ratio is

log x*
In;Z/In:h =0 | 1og XX'I

which depends on the choice of the frequency k¥*.

NACA TN 2541

(A16)
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